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Abstract. We present a detailed analytical study of a paradigmatic scale-free network model, the Static
Model. Analytical expressions for its main properties are derived by using the hidden variables formalism.
We map the model into a canonic hidden variables one, and solve the latter. The good agreement between
our predictions and extensive simulations of the original model suggests that the mapping is exact in the
infinite network size limit. One of the most remarkable findings of this study is the presence of relevant
disassortative correlations, which are induced by the physical condition of absence of self and multiple

connections.

PACS. 89.75.-k Complex systems — 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

In the last few years a considerable amount of research
effort has been devoted to the study of a large array of
natural and man-made systems that can be described in
terms of networks. In fact, systems as diverse as the In-
ternet [1], the World-Wide Web [2], collaborations net-
works [3,4], the web of sexual contacts [5], foodwebs [6,7],
protein interactions networks [8], metabolic networks [9],
and many others can be represented, at a certain level
of approximation, as networks or graphs [10], in which
vertices represent the elementary units composing the sys-
tem, while the edges stand for the relations or interactions
present between pairs of elements. These kind of systems
were in the previous century the subject of study of clas-
sical graph theory. Recently, however, the availability of
large data sets and more powerful computer resources, to-
gether with the application of new statistical tools, has led
to the development of a modern theory of complex net-
works [11,12], which is nowadays one of the most active
fields in the statistical physics of complex systems.

Despite of the wide variety of the systems considered
in this field, some common characteristics seems to be
present in almost all complex networks. Among them, the
most remarkable is probably the fact that many real-world
networks exhibit a fat-tailed degree distribution P(k).
That is, the probability that a randomly chosen vertex
has a number of emerging edges equal to an integer k (the
degree of the vertex) has the form for large k

P(k) ~ k77, (1)

where the degree exponent v commonly ranges in the in-
terval v € [2,3] [12]. This suggest the presence of a het-
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erogeneous hierarchy of vertices, lacking a characteristic
degree value, which has result in the common denomina-
tion of scale-free networks [13]. Moreover, the presence of a
scale-free degree distribution implies that the degree fluc-
tuations are unbounded in the infinite network size limit,
i.e. (k%) — oo when N — oo, which has a considerable im-
pact on the behavior of dynamical processes taking place
on top of the network. For instance, it has been shown
that scale-free networks are extremely resilient to random
damage [14-16], while at the same time they are very weak
in front to the spread of epidemic processes [17,18].

In addition to the degree distribution, it has been po-
inted out that real networks are further characterized by
the presence of degree correlations, which translate in the
fact that the degrees at the end points of any given edge
are not usually independent [19]. This kind of degree cor-
relations can be quantitatively expressed in terms of the
conditional probability P(k’|k) that a vertex of degree k
is connected to a vertex of degree k' [20,21]. From a nu-
merical point of view, the presence of correlations can be
conveniently studied by means of the average degree of
the nearest neighbors of the vertices of degree k, formally
defined as [20]

knn (k) = K P(K'|k). (2)
o

A first classification of networks has been proposed ac-
cording to the nature of their correlations [22]. Thus, when
knn(k) is a growing function of k, the network is said to
exhibit assortative mizing, while a decreasing k., (k) func-
tion is typical of disassortative mizing.

The appealing evidence for the existence of scale-free
networks has prompted the development of numerous
models, aimed at understanding the origin of fat-tailed
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degree distributions, or even the nature of degree cor-
relations [23]. Scale-free network models can be roughly
divided in two main classes: growing network models, cap-
italizing in the original Barabdsi-Albert model [13], focus
their approach on the evolution of the network, rather
than on its structure. The key ingredient of these models
consist in considering the network as a result of a growth
process, in which new vertices and edges are sequentially
added to the system following a prescribed set of dynami-
cal rules (usually inspired in the preferential attachment or
rich-get-richer paradigm [13]). On the other hand, static
network models consider networks with a constant num-
ber of vertices N, among which edges are drawn following
different probabilistic rules. In this sense, reference [24]
proposed a static network model yielding a scale-free de-
gree distribution, which was generalized in reference [21]
(see also Ref. [25]) to a class of static network models, the
hidden variables network models, which allow to develop a
systematic analytical formalism for this class of systems.

One of the models belonging to the class of static net-
work models that has recently attracted some attention, is
the so-called static model (SM), recently proposed in ref-
erence [26]. The interest raised by the SM has a twofold
origin. Firstly, its definition is very simple, and allows to
generate large networks with any desired degree exponent
with a reasonable amount of computer effort. Secondly, its
use as a benchmark to check the properties of both scale-
free networks and dynamical processes running on top of
networks has become quite widespread lately [26-30]. In
spite of this wide interest and use, however, little is known
from an analytical point of view about the properties of
the networks generated by the SM (apart from its scale-
free nature [31]), especially in what refers the nature of its
possible degree correlations.

In this paper we present an analytical treatment of
the SM based in a mapping to a hidden variables network
model. Using the hidden variables formalism, we are able
to provide analytic expressions for the main properties of
the SM, in particular for the degree distribution and the
degree correlations, as measured by the k., (k) function,
showing a very good agreement with extensive numerical
simulations of the original SM model. One of the most re-
markable findings that we report is the presence of strong
disassortative degree correlations in the SM for values of
the degree exponents close to 2, in agreement with the
theoretical arguments put forward in reference [33]. The
presence of this correlations indicate that the results of
dynamical processes running on top of networks gener-
ated with the SM should be interpreted with great care,
in order to discern the effects due to the scale-free nature
of the networks from those related with the presence of
intrinsic degree correlations.

The paper is organized as follows. In Section 2 we re-
view the definition of the SM model, as well as some of the
its properties, that can be derived by using simple quali-
tative arguments. In Section 3 we provide an overview of
the general formalism for hidden variables network mod-
els and discuss how can we map the original SM into a
model belonging this class of networks. In Section 4 we
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proceed to solve the mapped model, and provide analyt-
ical expression for its main quantitative properties. The
analytical results obtained are checked by means of direct
numerical simulations of the original SM in Section 5. Fi-
nally, in Section 6 we draw the conclusions of our work.

2 The static model

The static model (SM) was introduced in reference [26] as
an algorithm to generate scale-free static (i.e. not growing)
networks with any desired degree exponent v larger than
or equal to 2. The model is defined as follows: we start
from N disconnected vertices, each one of them indexed
by an integer number i, taking the values i =1,...N. To
each vertex, a normalized probability p; is assigned, given
as function of the index i by

y—

7
N .
Z]:lj o

where « is a real number in the range o € [0,1]. The
network is constructed iterating the following rules: two
different vertices ¢ and j are randomly selected from the
set of N vertices, with probability p; and p;, respectively.
If there exists an edge between these two vertices, they are
discarded and a new pair is randomly drawn. Otherwise,
an edge is created between vertices 7 and j. This process is
repeated until £ = mN edges are created in the network,
accounting for a fixed average degree (k) = 2E/N = 2m.

This algorithm generates networks in which, by con-
struction, there are no self-connections (a vertex joined to
itself) not multiple connections (two vertices connected
by more than one edge). The corresponding degree distri-
bution can be estimated by means of a simple mean-field
argument [26]. Since edges are connected to vertices with a
probability given by the factor p;, we have that the proba-
bility that any edge belongs to the vertex i, with degree k;,
is given by

3)

pi =

k;

= ~Di (4)
Zj k; '

In the large N limit, approximating sums by integrals, we
have that, for 0 < a < 1,

N

. * ., Nt
ZJ“N/ D (5)
i=1 1 e

Therefore, since }_, k; = (k) N, we have from equation (4)
that

ks Npiij ~2m(1 — a) <%)a (6)

J

From this last expression, and using general arguments
from network theory [12], we conclude that the degree
distribution characterizing these networks has a scale-free
form, P(k) ~ k=7, with a degree exponent
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Thus, tuning the parameter « in the range [0, 1] it is pos-
sible to generate networks with a degree exponent in the
range y € [2, 00].

Just at this stage, it is possible to notice that the SM
generates networks with built-in degree correlations. From
equation (6), we observe that the maximum degree, cor-
responding to the index ¢ = 1, is given by

ki:l ~ 2m(1 - a)Na. (8)

This implies that the cut-off (or maximum expected de-
gree) k.(N) in the network [32] scales with the network
size as k.(N) ~ N“. Now, it has been proved that, in or-
der to have no correlations in the absence of multiple and
self-connections, a scale-free networks with size N must
have a cut-off scaling at most as ks(N) ~ N'/2 (the so-
called structural cut-off) [33]. Therefore, the SM should
yield correlated networks for values o > 1/2, i.e., for de-
gree exponents in the interval 2 < v < 3, which correspond
to those values empirically observed in real scale-free net-
works. In the following sections we will provide an ana-
lytical description of the origin and form of these degree
correlations.

3 Mapping to a hidden variables network
model

In order to solve analytically the SM, it is useful to map
it to a hidden variables network model [21,24,25]. Hid-
den variables network models are a generalization of the
Erdés-Rényi model [34] in which vertices are assigned a
tag (or hidden variable) whose statistical properties com-
pletely determine the topological structure of the ensuing
networks.

3.1 General network models with hidden variables

The class of network models with hidden variables is de-
fined as follows [21]: starting from a set of N disconnected
vertices and a general hidden variable h, that can be a
natural or real number, we construct an undirected net-
work with no self nor multiple connections, by applying
these two rules:

1. To each vertex i, a variable h; is assigned, drawn at
random from the probability distribution p(h).

2. For each pair of vertices ¢ and j, with hidden variables
h; and hj, respectively, an edge is created with prob-
ability r(h;, h;) (the connection probability), where
r(h,h') > 0 is a symmetric function of h and h'.

In this class of models, the degree distribution is
given by
= g(klh)p(h) (9)
h

where the propagator g(k|h) gives the conditional proba-
bility that a vertex with hidden variable h ends up con-
nected to k vertices. The propagator is a normalized func-
tion, Y, g(k|h) = 1, whose generating function g(z|h),
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defined by
g(zlh) =Y Zg(klh), (10)
k
fulfills in the general case the expression [21]
Inh(z NZp JIn[l — (1 —2)r(h,A")].  (11)

Given the probabilities p(h) and r(h,h’), equation (11)
must be solved and inverted in order to obtain the corre-
sponding propagator and the degree distribution. Without
solving this equation, however, we can still obtain some in-
formation on the connectivity properties of the network.
Noticing that the first moment of g(k|h) is given by the
first derivative of §(z|h), evaluated at z = 1, we that the
average degree of the vertices of hidden variable h, k(h),
is given by

h) = kg(klh) = N> p(')r(h,h'),  (12)
k n’
while the average degree takes the form
(13)

k) =S Pk) = 3 p(h)k(R)
k h

In order to characterize degree correlations in a gen-
eral model with hidden variables, we need to provide an
expression for the average degree of the neighbors of the
vertices of degree k, kyy, (k). Consider first the average de-
gree of the neighbors of the vertices of hidden variable h,
knn(h). This quantity can be expressed as

Z k(h

Yo(h'|h), (14)

where p(h'|h) is the conditional probability that a ver-
tex of hidden variable h is connected to a vertex of hidden
variable h'. To compute this last quantity, we observe that
the probability of drawing an edge from h to A’ is propor-
tional to the probability of finding an h’ vertex, times the
probability of creating an actual edge. Therefore,

p(W)r(h, 1)

Np()r(h, 1)

p(h'[h) = S p(W () k(h) 1
Thus, we have that

B = Y WYk(W yr(h, 16

() = g3 2 PR (e ). (16)

Finally, the correlation function k., (k) can be shown to
be given by [21]

(). (17)
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3.2 Mapping the static model

In order to map the SM into a hidden variables network
model we need to provide a proper definition of the hid-
den variables h, their probability distribution p(h), and
the connection probability r(h,h’). A natural choice for
the hidden variable is the index 7 associated to each ver-
tex. On its turn, the connection probability 7(i, j) can be
defined as the probability that vertices ¢ and j end up
connected in the final network. With the original defini-
tion of the SM, it is difficult to estimate this connection
probability. In order to overcome this difficulty, we will
consider a small variation of the algorithm defining the
model. Within the original definition, in a first step of
the model, a potential edge (i,7) is selected, by randomly
choosing a pair of vertices ¢ and j, with probabilities p;
and pj;, respectively, as given by equation (3). In a second
step, the potential edge (i, j) is actually created if it did
not exist previously, and this process is repeated until a
given number of actual edges £ = mN is reached, leading
to a constant average degree (k) = 2m. Thus, we can con-
sider this as a microcanonical model, since the average de-
gree is held fixed. This fact is in opposition with the spirit
of hidden variables network models, in which the average
degree is not constant, but tends to an asymptotic value
for large network sizes [21]. We can place the SM within
this network class by converting it to a canonical model,
in which a fixed number £ = mN of potential edges is
chosen, and afterwards checked for their actual addition
to the network. This canonical version of the SM will lead
to a network with a number of edges smaller than or equal
to E, and therefore to an average degree (k) < 2m. How-
ever, we expect that this canonical version of the SM will
coincide with the microcanonical original SM in the infi-
nite network size limit, and to observe (k) — 2m in the
limit N — oco. The good agreement between theoretical
predictions derived from the first and simulations of the
second will confirm this claim.

Let us look at the edge creation process in the canon-
ical version of the SM. If we allow for the possibility to
choose a potential edge with ¢ = j (self-connection), the
probability of selecting the potential edge (,7) is 2p;p;
if i # j, and p? if i = j. In a more compact form, the
probability of choosing the potential edge (4, j) is

,/T(Za]) = (27

where ;5 is the Kronecker symbol. This probability is nat-
urally normalized: if we sum (i, j) over all the N(N+1)/2
possible potential edges (including self-connections), we

have
> wi g) =Y 2pip; — > _ 1}

i<j i<j

05 )PiDj (18)

=D 2+ pi= (Zp) =1 (19)

i<j i

since the original distribution p; is normalized.
The probability that, in the final network, the ver-
tices ¢ and j are connected is equal to the probability that
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the potential edge (7,j) has been selected at least once,
which is the complementary probability that it has not
been selected in the F trials made to generate the net-
work. Therefore, for the canonical version of the SM, we
have that the probability that vertices ¢ and j are con-
nected in the network is

pe(i,g) =1—[1— (i, 5)".

This expression can be further simplified by taking the
limit of large N. We have that E = mN and p; ~i~*(1—
a)N*~1 Therefore, we can write

(20)

a1mN

- (5@‘)(1 — 05)2N2a_2i_aj_ ] .
(21)

Thus, in the limit N — 0o, we can approximate this ex-
pression by an exponential, that yields the final result

pe(i,j) =1-[1-(2

pe(i,j) =1 —exp [—(2 = §;;)m(1 — a)? N2~ 1im 5] .
(22)
This is the probability that two vertices end up connected
in the final network in the canonical version of the SM.
Therefore, in the hidden variables version of the model we
can set the connection probability

r(i,j) =1 —exp[-2m(1 — @)’ N?*~ 157 ] | (23)
where we have neglected the Kronecker symbol, since in
hidden variable models we do no allow for the possibil-
ity of self-connections. A first conclusion can be extracted
from this connections probability: it does not factorize in
two independent functions of ¢ and j. Therefore, degree
correlations will be present in the model [21].

To complete the mapping, we finally need to give a pre-
scription for the probability p(i) of a vertex having hidden
variable (index) 4. In the original definition of the model,
the index is assigned deterministically to each vertex. Here
we will assume an approximation already made for other
models [21], that consists in considering the hidden vari-
able i randomly assigned from the set {1,2,..., N}, with
probability p(i) = 1/N. As we will see in the next sec-
tions, this assumption does not have a strong influence in
most of the analytic results, when compared with numer-
ical simulations of the original SM.

4 Analytic solution

4.1 Average degree

Let us consider in the first place the behavior of the overall
average degree, and the average degree of the vertices with

index 4. From equation (12), togheter with the definition
of the probabilities p(i) and (i, j), we have that

k(i) =N Z p(j)r(i, 7)

= Z {1—exp[-2m(1 — a)?N>* 1757} . (24)
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Approximating sums by integrals, and performing the

change of variables j = Nz, we are led to the expression
1

k(i)=N dz {1 —exp [-2m(1 — a)?) N> 'i 2z~ ]},

N1
(25)
Since a < 1, the argument of the exponential is a de-
creasing function of N. Therefore, in the limit N — oo,
we can perform a Taylor expansion of the integrand, and
approximate

1

O B

_ ng_ o) (%) - e,

For large N, the last term in this expression tends to 1,
and we recover the mean-field result obtained previously
for the SM, equation (6).

As for the average degree, we have from equation (13)

(26)

(27)

(k) = 3" pli(0)

= %imu — ) <%>a (1—- N>

=2m(l — N> 1?2 (28)

where again we have approximated sums by integrals. We
observe that, for any finite network size, (k) < 2m. How-
ever, in the thermodynamic limit N — oo, we recover the
fixed degree exponent (k) = 2m imposed by the SM.

4.2 Degree distribution

In order to compute the degree distribution, we must first
solve equation (11) for the generating function of the prop-
agator, §(z|i). For the probabilities p(i) and r(i, j) we are
considering, approximating sums by integrals and per-
forming again the change of variables j = Nz, we have
that

Ing(z|i) = N/Ni1 drln[l—(1-2z) (29)

x (1 —exp{—2m(1—a)?)N*'i" 2z~ *})]. (30)

For a < 1, the argument in the exponential is again de-
creasing in the large N limit. Therefore, expanding to first
order the exponential, and then the logarithm inside the
integral, we are led to

1
Ing(zli) =N dz(1 — z)2m(1 — a)2Ne—lj—ag—a
N*l

= (1 - 2)k(i).

Given equation (31), we find that the propagator is finally
given by a Poisson form:

(31)

expl R

g(kli) = ] (32)
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Knowing the form of the propagator, we can derive the
degree distribution applying equation (9), i.e.

al m(1— a)]*
PR) = Y- plia(kly) = S= S
X /N“ dz exp[—2m(1 — a)z]zF =11/ (33)

where we have approximated ¢ as a continuous variable,
performed the change of variables i = Nz =/, and ex-
pressed k! = I'(k+1), where I'(2) is the standard Gamma
function. The only dependence of expression on the net-
work size is through the upper limit in the integral. There-
fore, in the thermodynamic limit we can use the result [35]

o0
/ e BYyAdy = B4 (1 + A, B),
1

(34)

where I'(z,a) is the incomplete Gamma function, to ob-
tain

[2m(1 — )]V I'(k — 1/, 2m[1 — a])

P(k) = a I'(k+1)

(35)

In order to obtain the asymptotic behavior of the de-
gree distribution for large k, we note that I'(z,a) — I'(z)
for z — oo. Therefore, for large k

_[2m(1 - )V Tk —1/a)

P ~ ~ —1—1/0(.
(k) a I'(k+1) F

(36)

That is, we recover a scale-free degree distribution with
a degree exponent v = 1 + 1/a, as derived by mean-field
arguments for the original SM.

4.3 Degree correlations

Next, we aim to calculate the average nearest neighbor
degree of the vertices with degree k, kn,(k), in order to
evaluate correlations. To do so, we first compute the av-
erage nearest neighbor degree of the vertices with index ¢,
knn(i), that is given by equation (12). Using the expres-
sion for k(i) that we have evaluated in equation (27) in
the large N limit, we have

B N
Fonn (i) = i@ Zj—a
x [1—exp{—2m(1—a)>)N>*"1i~*;7*}]. (37)

We can proceed as usual, replacing sums by integrals. In
this case, however, it is not possible to Taylor expand the
integral after an appropriate change of variables, since the
extra factor 7~ in the integral causes it to diverge in its
lower limit. We must therefore keep the full exponential
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form. After some formal manipulations, we can write

- (N —1
fonli) = S
o poo
+ZE / dzz=Y % exp {-2m(1 — @)’ N**"1i"z}
1

Z‘ole—a 0
- / dzax™ " exp {—2m(1 — )’ N*"ti "z} .
a 1

After applying the identity equation (34), we are led to
the solution

_ ) ,L'oz(Nl—oz _ 1)
k(1) = —————
'alea
+Z [Qm(l o a)QNQOzflifa]flJrl/a

1
X {F(l — =, 2m(1 — a)? N2~
«

-Tr (1 — l, 2m(1 — a)QNo‘_li_“) } . (38)

o

As we will see in the following section, the approxi-
mation given by equation (38) is in fact not very good,
and a much better agreement with numerical simulations
is obtained by performing numerically the summation in
the original discrete expression equation (37). This fact
is due to the effects of the continuum approximation in
the index i, which are negligible at the level of the degree
distribution, but show up at the level of correlations.

Finally, for the average degree of the nearest neigh-
bors of the vertices of degree k, ky,(k), we resort to the
expression equation (17), taking the form for the SM

Fan (k) = 1+ S5 > exPl=k(@)]k(0) Ean (). (39)

This expression is far too complex to obtain even an
asymptotic expression in the continuous ¢ approximation,
so we will compare numerical simulations with a direct
numerical evaluation of the summation in equation (39).

5 Numerical simulations

We have checked the analytical predictions presented in
the previous section by means of extensive numerical sim-
ulations of the original SM. We have generated networks
with « variable, m = 3 and size N = 10°. All results are
averaged over 103 realizations for each value of the pa-
rameter «. Simulation were performed as follows: at each
iteration, we extract a pair of real numbers according to a
power-law probability distribution with exponent «, nor-
malized between 0.5 and N + 0.5. Number are extracted
using the Monte Carlo inversion method [36]. Then, we ap-
proximate each number to the nearest integer, so that the
resulting pair is composed by integers between 1 and N.
These are the two candidate vertices to be connected by
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Fig. 1. Average degree of the vertices with index 7 in the orig-

inal SM, for two different values of a. The solid lines represent
the theoretical value given by equation (27).

and edge. If the proposed pair is composed by two iden-
tical numbers, or it has been extracted before, the ex-
traction is rejected and repeated until two valid vertices
are proposed. We iterate this procedure until a network
of E = mN edges is created. This algorithm corresponds
exactly to the original SM. The only modification is that
the probability distribution according to which we extract
the candidate edges is not discrete, but continuous. Any-
way, it is possible to see that the results of the proposed
procedure are indistinguishable from those obtained from
methods that start directly from a discretized distribu-
tion, but require more computation time (for example, by
using the rejection method [36]).

In Figure 1 we plot the average degree of the vertices
with index i, k(i) for two different values of a, namely
a = 0.55 and a = 0.8, which correspond to the degree
exponents 7 = 2.82 and v = 2.25, respectively. In both
cases, the analytical result, as as given by equation (27),
fit almost perfectly the curves emerging from numerical
simulation. The same happens for the degree distribution,
shown in Figure 2, for the two values of « considered. As
we can see from this figure, the complete expression calcu-
lated in equation (35) fits exactly the whole distribution,
except at very large values of k. This discrepancy, due
to the finite size of the networks, is easy to understand.
From equation (27), we can observe that large values of k
correspond to small values of the index 4. In this region,
the continuous ¢ and k approximation made in all calcu-
lations is expected to fail, and the index i to show its
true discrete nature. Indeed, this fact can be clearly ob-
served in the inset in Figure 2, where we plot a close-up
of the tail of the degree distribution obtained for o = 0.8,
obtained from averaging over 10® network samples. This
plot shows a set of peaks, corresponding to the first values
of the index 4, from 1 to 8. The centers of the peaks are
well approximated by the analytical k(i) function given in
equation (27), and represented by means of vertical dot-
ted lines, except for very small values of . The width of
the peaks is accounted for by the fluctuations in the value
of k in the different network samples.
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10 10 10° 10 10
k

Fig. 2. Degree distribution in the SM for two different val-
ues of a. The dotted and dashed lines represent the theoretical
value given by equation (35). In the inset: enlargement of the
tail of the distribution. Peaks due to the discretization of the
degree are visible. Dashed vertical lines represent the theoret-
ical values of the centers of such peaks.
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Fig. 3. Average nearest neighbor degree of the vertices with
index i in the SM for two different values of . The solid lines
represent the theoretical value given by the numerical sum-
mation of equation (37). The dashed lines correspond to the
analytical approximation in the equation (38).

In Figure 3 we report the average nearest neighbors
degree of the vertices with index ¢. The dashed line rep-
resents the theoretical approximation obtained in equa-
tion (38). We find a percentually small difference between
calculation and simulation. This difference can be at-
tributed to the effect of the continuous approximation. In-
deed, if we numerically calculate the sum of equation (37)
and report it in the plot (continuous line), we obtain a
better fit of the simulation results. A good agreement be-
tween theory and simulation is obtained as well in the
plot of the average nearest neighbor degree of the vertices
with degree k, Figure 4, at least for sufficiently large val-
ues of . Here theoretical value is obtained directly from
numerical summation of equation (39), that cannot be ap-
proximated analytically in a simple way. The correlation
function displays an almost constant behavior at low de-
grees and a decreasing slope at high degrees, i.e. a regime
without any correlation followed by one characterized by
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Fig. 4. Average nearest neighbor degree of the vertices with
degree k, in the SM for two different values of . The dashed
lines correspond to the numerical summation of equation (39).

strong disassortative mixing. The emergence of these cor-
relation is connected to the absence of multiple and self-
connections. By doing this, we bias the natural tendency
of high degree vertices to have some connections into each
other, favoring their linking to small degree vertices, and,
therefore, generating negative correlations in the degree.
This phenomenon appears to be extremely relevant for
small values of . In the case a = 0.8, for example, we can
observe in the average neighbor connectivity a decay of
more than one decade in about two decades of the degree.
On the other hand, the analytical solutions does not be-
have so well for large values of v (small «), probably due
to the accumulated effect of all the approximations made
in obtaining this expression.

6 Conclusions

In this work we have presented an analytic solution of the
static model [26], which has been recently proposed as a
paradigmatic scale-free non-growing network model. The
solution is obtained via a mapping of the SM into a hid-
den variables network model, that represents its canonical
counterpart, i.e. in which the number of edges is not held
fixed, but whose average degree tends to a constant in the
infinite network size limit. We have derived analytically
the properties of the mapped hidden variables network
model and checked the predictions by means of exten-
sive numerical simulations of the original model. The good
agreement observed implies that the canonical version of
the SM is identical to the original version in the ther-
modynamic limit N — oo. It is particularly noteworthy
that our analytical calculations have allowed us to eval-
uate the correlations induced in the model by the physi-
cal condition of absence of self and multiple connections.
The detected amount of correlation is considerable and
can have a strong influence both on the topology of the
networks, and on dynamics running on top of them. The
presence of these correlations thus casts some shadows on
the usefulness of the SM as a benchmark for mean-field so-
lutions of dynamical processes, which are usually obtained
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in the uncorrelated limit. In this sense, the recently pro-
posed Uncorrelated Configuration Model [37] appears to
be a more adequate instrument for the investigation of the
effects of scale-invariance in network topology and dynam-
ics, without the perturbations induced by the presence of
correlations.
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